A molecular precursor approach to monodisperse scintillating CeF3 nanocrystals.
نویسندگان
چکیده
A series of anhydrous cerium(III) trifluoroacetate complexes with neutral O-donor ligands, namely Ce2(OAc)(TFA)5(DMF)3 (1), Ce(TFA)3(L)x [x = 2, L = THF (2), DMF (3), DMSO (4); x = 1, L = diglyme (5)] and Ce2(TFA)6(DMSO)x(DMF)y [x = 6, y = 0 (6); x = 4, y = 2 (7)] (where OAc = acetate, TFA = trifluoroacetate, THF = tetrahydrofuran, DMF = dimethylformamide, DMSO = dimethylsulphoxide, and diglyme = MeO(C2H4O)2Me] were synthesized and completely characterized by elemental analysis, FT-IR spectroscopy and TG-DTA-MS studies. A partially hydrated complex [Ce(TFA)3(diglyme)(H2O)] (8) was obtained by slow evaporation of the THF solution of anhydrous 5 in the air. The single crystal X-ray diffraction analysis of 1, 3, 4, and 6–8 showed the versatile bonding mode of the TFA ligand (terminal, chelating and bridging). These complexes, on decomposition in 1-octadecene in inert atmosphere, gave CeF3 nanoparticles of 8–11 nm size. The complex 5 proved to be the best precursor in the series because of the ability of the diglyme ligand to act as capping reagent during decomposition to render the CeF3 particles monodisperse in organic solvents. The obtained CeF3 nanoparticles were characterized by FT-IR, EDX analysis and TEM studies and their luminescence and scintillation responses under UV and X-ray excitation were studied and compared with that of CeF3 single crystal.
منابع مشابه
Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach
Molecular mechanisms and precursor conversion pathways associated with the reactions that generate colloidal nanocrystals are crucial for the development of rational synthetic protocols. In this study, Fourier transform infrared spectroscopy technique was employed to explore the molecular mechanism associated with the formation of tin-doped indium oxide (ITO) nanocrystals. We found that the rea...
متن کاملEnhanced visible and near infrared emissions via Ce(3+) to Ln(3+) energy transfer in Ln(3+)-doped CeF3 nanocrystals (Ln = Nd and Sm).
We report the enhancement of both visible and near infrared (NIR) emissions from Nd(3+) ions via Ce(3+) sensitization in colloidal nanocrystals for the first time. This is achieved in citrate capped Nd(3+)-doped CeF3 nanocrystals under ultraviolet (UV) irradiation (λex = 282 nm). The lasing transition ((4)F3/2 → (4)I11/2) at 1064 nm from Nd(3+)-doped CeF3 nanocrystals has much higher emission i...
متن کاملStructural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals
ABSTRACT Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals, formed in this way, were investigated. Spectrosc...
متن کاملOrganic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor.
Monodisperse iron oxide nanocrystals were synthesized by a simplified method using iron chloride as precursor. In the presence of Cl ions, the as-produced iron oxide nanocrystals preferred a cubic shape with {100} facets exposed. The function of halogens including Cl and Br ions on stabilizing {100} facets of spinel structured iron oxides, rather than the regulation of thermolysis kinetics and ...
متن کاملEfficient Thermolysis Route to Monodisperse Cu2ZnSnS4 Nanocrystals with Controlled Shape and Structure
Monodisperse Cu2ZnSnS4 (CZTS) nanocrystals with tunable shape, crystalline phase, and composition are synthesized by efficient thermolysis of a single source precursor of mixed metal-oleate complexes in hot organic solvents with dissolved sulfur sources. Suitable tuning of the synthetic conditions and the Cu/(Zn + Sn) ratio of the precursor has enabled precise control of the crystalline phase i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 42 35 شماره
صفحات -
تاریخ انتشار 2013